An Adaptive Network Prefetch Scheme *

Zhimei Jiang and Leonard Kleinrock f, Fellow, IEEE
Abstract

In this paper, we present an adaplive prefetch scheme for network use, in which we
download files that will very likely be requested in the near future, based on the user
access history and the network condilions. Our prefetch scheme consists of two parts:
a prediction module and a threshold module. In the prediction module, we estimate the
probability with which each file will be requested in the near future. In the threshold
module, we compute the prefetch threshold for each related server, the idea being that
the access probability is compared to the prefetch threshold. An itmportant contribution
of this paper is thal we derive a formula for the prefetch threshold to determine its value
dynamically based on system load, capacity, and the cost of time and system resources
to the user. We also show that by prefelching those files whose access probability is
greater than or equal to its server’s prefetch threshold, a lower average cost can always
be achieved. As an example, we present a prediction algorithm for web browsing. Sim-
ulations of this prediction algorithm show that, by using access information from the
client, we can achieve high successful prediction rates, while using that from the server
generally results in more hits.

1 Introduction

Due to the proliferation of the World Wide Web (WWW), there has been a large increase in
the amount of information transmitted over the Internet. However, the growth of internet
capacity is not keeping pace, and often users experience long delays in retrieving files from
remote machines when running network related applications. Among these network appli-
cations, the most popular ones are Web browsing, email and news groups. Sometimes, the
waiting does not end even after the files have made it to the local disk. For example, after an
access, the client machine may need to decompress the received files, compile Java programs,
etc. On the other hand, between two network accesses, users will be viewing the information
just downloaded and the local machine is generally idle. The key idea of prefetching is to
take advantage of these idle periods to fetch the files that will very likely be requested in

*This work was supported by the Advanced Research Projects Agency, ARPA/CSTO, under Contract
DABT-63-94-C-0080 “Transparent Virtual Mobile Environment”.
TThe authors are with the Computer Science Department, University of California at Los Angeles, Los

Angeles, CA. 90024. (email: {jiang, lk}@cs.ucla.edu)

the near future, so that the user’s average waiting time can be reduced. More specifically,
we add some intelligence to the network applications such that whenever the user requests
a block of information (a file, an email message, etc.), the system can estimate what
additional information (files, messages, etc.)* will be needed in the next few user accesses
and transmit some of them to the local disk beforehand, according to certain criteria. If the
prefetched information is indeed requested, the user can access it with negligible delay. In
addition, prefetch allows more time for sophisticated processing including encryption, com-
pression, and compilation to be carried out at both server and client sites, so that data can

be transmitted more efficiently and securely without increasing the delay to the user.

If we knew exactly which files a user needed next, we would retrieve only those files in ad-
vance. Assuming that the prefetch operation always finishes before the user requests the next
file, then we would enjoy zero latency with no extra bandwidth consumption. Unfortunately,
in reality, some prefetched information may never be used, resulting in wasted bandwidth
and increased delay to normal (nonprefetch) requests. This shows that the prefetch problem
has two aspects. The first one is how to estimate the probability of each file being accessed
in the near future. In general, this probability changes with time as new requests are issued
by the user. The second aspect is how to determine which files to prefetch such that the
overall system performance can be optimized relative to some criteria. Previous studies on
internet prefetch only focus on the first part of the problem and either use a fixed threshold or
prefetch a fixed number of the most popular links on a page [2, 8, 10]. In PeakJet prefetching
software for web browsers, all available links on the page being viewed are prefetched[12]. If
everyone were to use this method, the problem of surges in network traffic is obvious. In fact,
prefetching without caution could be disastrous to the network. We solve the second part of
the prefetch problem by determining the prefetch threshold based on the network conditions
in real time, which is the key to safely achieving high efficiency and reduced average delay

for the entire system.

Regarding the two aspects of the prefetch problem, our prefetch scheme consists of two
modules: the prediction module and the threshold module. The complete scheme works as
follows. After a user’s request for a new file is satisfied, the prediction module immediately
updates the history information if needed, and computes the access probability for each
candidate file, where the access probability of a file is an estimate of the probability with

which the file will be requested by the user in the near future. Different applications may

*For simplicity, in the rest of this paper, we use the term “file” to represent a block of information whether
it is a file, directory listing, web page, or other information requested by the user.

use different prediction algorithms in this module. Then the threshold module determines
the prefetch threshold for each related server, which contains at least one candidate file
with nonzero access probability. The algorithm used in this module is independent of the
application. Finally, each file whose access probability exceeds or equals its server’s prefetch
threshold is prefetched. When prefetching a file, the file is actually downloaded if and only

if no up-to-date version of the file is available on the local disk; otherwise no action is taken.

As an example, we present a simple prediction algorithm for web browsing, and study
its performance through simulations in which the prefetch threshold is set at various values.
Although web browsing is an important application for prefetching, our prefetch scheme may
be applied to basically any network application in which prefetching is possible. In general,
for different applications, different prediction algorithms may be developed, while the same
threshold algorithm can be employed, and the same prefetching criteria can always achieve

the optimum performance.

Details about the two modules of our prefetch scheme are covered in the next two sections.
In section 2, we also present a prediction algorithm for web browsing. In section 3, we derive
a formula for determining the prefetch threshold based on the network conditions. We
also study the efficiency of our prediction algorithm for web browsing through trace-driven

simulations. The results are summarized in section 4. Conclusions are presented in section

5.

2 The prediction module

The task of the prediction module is to keep track of the user’s access history and to com-
pute access probabilities in order to determine which files to prefetch. Different prediction
algorithms can be designed for different applications. For instance, an application which
handles email may assign each message a probability based on certain criteria, for example
the latest /earliest message has the largest probability, or messages with a subject similar to
the one being read have larger probabilities, etc., such that while a user is reading an email,
the messages he might read soon may be prefetched. Another example is when a user logs
in to a remote machine and switches to a directory, the files and subdirectories in this direc-
tory may be assigned certain access probabilities and some of them can be prefetched since
user may need them soon. Web browsing is an application where sophisticated prediction is
necessary. In the rest of this section, we present a prediction algorithm which can be used

in web browsers.

In web browsing, we define the access probability p(B|A) as the conditional probability
that page B will be requested by the user in the near future given that page A is being
viewed. Our prediction algorithm is based on the fact that typical web surfing involves a
sequence of clicking and downloading operations. Namely, first the user clicks on a link, and
a new page is downloaded. After viewing the new page, the user usually clicks on a link
on this page to download another new page. Sometimes, the user may use the “back” or
“forward” button on the browser to go back to some previous page and then click on another
link on that page. Rarely does the user type in a URL to switch to a new page. We take
advantage of this feature by only keeping track of the click operations and assuming that
p(BJ|A) is zero if no link exists on page A to page B. In other words, whenever a new page
is displayed, the candidate files we consider only include those which are linked to this page.
In our algorithm, the access probabilities of embedded images or programs have been set to

zero, but they could be prefetched when the page which includes them is prefetched.

Both [2] and [10] studied prediction algorithms for the WWW. Parameters similar to
access probability are defined in these work. In both algorithms, a window is applied to the
access sequence, either in terms of time or in terms of the number of requests. Files within
the same window are all considered to be dependent. Since the content of each page varies
greatly and how pages are browsed differs from user to user, it is difficult to adjust the size
of the time window. In the WWW after an html file is downloaded, the images embedded
in this file are downloaded immediately. Therefore, the request window includes both html
files and embedded images, which makes it hard to determine the request window size as
well. Since both algorithms keep all access pairs that are in the same window for future
prediction, the memory space required could be as large as the square of the total number of
files requested. Our scheme is similar to using a request window of size two after removing
all the requests that were not sent explicitly by the user, for example those for embedded
images, etc., from the request sequence and eliminating all the unrelated pairs of requests.
The latter can be accomplished because we keep track of each request as well as the page
from which the request was initiated by clicking on a link. It is easy to get this information at
the client site. Note that the page from which a request is initiated may not be the previous
one in the request sequence, since the user can click the “back” button on the browser to go
back to an earlier page. Assuming the number of links on a page is bounded, our algorithm

requires memory space linear to the number of pages on the server.

The details of the prediction algorithm are as follows. For each client, in order to collect

the history information for prediction, the algorithm maintains two kinds of counters, the

page counter and the link counter. More specifically, each page A is associated with a page
counter, C'4. In addition, if page B can be accessed directly from page A, namely there
exists a link on page A pointing to page B, then and only then is there a link counter C'(4 g
for the pair. Whenever page A is downloaded, C4 is increased by one. In addition, if page B
is accessed by clicking on the corresponding link on page A, counter C4 p) is also increased
by one. The access probabilities are obtained in the following way. When a page, A, is being
viewed by the user, for each page B; linked to A, the access probability of B; is computed
as p(B;|A) = min(1, O(g—fi)) for C4 > 5, and 0 for C'4 < 5. All the files which are not linked
to the page being viewed have access probability zero. The values of the counters are based
on the access history during a certain period of time, for example the last 30 days. The

algorithm is also illustrated in figure 1.

Page Bi (Cg;)

Figure 1: Prediction algorithm for web browsing.

Note that for a page A with k distinct links (By, By,---, By), S5, P{B;|A} can be
greater than one. This is because a user may click link B; on page A and come “back” later
to go to another link B; through page A. Therefore while page A is retrieved from the server

only once, more than one file might be accessed from page A.

The prediction algorithm described above is for the client site browser. The same algo-
rithm can also be implemented at the server site, where each server aggregates the access
histories of all users to its pages and computes the access probabilities accordingly. The only
difficulty at the server is that it is not straightforward to find out from which page a request
was initiated. The best way to get this information is to require the client to include it in the
http request. However, if we do not wish to change the http protocol, we can have the server
keep track of the last page request from each of a certain number of users who accessed it
most recently. When a new request from a tracked user arrives, the server assumes it was

initiated from the previous page requested by that user if such a link exists.

Clearly, the access probabilities generated by the client site indicate the user’s personal

interests, while those generated by the server site represent the popularity of the files over
many users that have accessed that server. If a client has not visited a page often enough
to obtain reliable access probabilities, the server’s access probabilities are likely to be more
accurate. Access probabilities from the server and client can be merged in the following way
at the client site. If a page has been visited less than 5 times by the client, and the access
probabilities of its links are available at the server, then the probabilities at the server can
be used. Otherwise, the access probabilities from the client are used. More sophisticated
algorithms may be developed to do this merging. In section 4, we compare the performance

of the access probabilities obtained in different ways.

The algorithm described in this section is an essential component of a complete prediction
algorithm for web browsing. More functions may be added for better prediction. Further
discussion of this issue is beyond the scope of this paper. The idea we are trying convey
through our prediction algorithm is that in order to predict a user’s behavior in web browsing,
it is not sufficient to just look at the sequence of requests independently, we must take

advantage of the underlying link relations between pages to achieve better performance.

3 The threshold module

Our prefetching scheme tries to optimize the tradeoff between system resource (network link,
server etc.) usage and latency, by predicting which files are likely to be needed soon and
choosing some of them to download beforehand. The first part of this task is accomplished
by the prediction module as we discussed in the last section. In the threshold module,
we determine the prefetch threshold for the server in real time to determine which files to
prefetch. Unlike the prediction module, the algorithm used in the threshold module is the

same for all applications.

To optimize the tradeoff between system resource usage and latency, we choose to measure
the system performance in terms of cost which is comprised of the delay cost (ar $/time
unit) and the system resource cost (ap $/packet). The delay cost indicates how much the
user suffers waiting for files. The system resource cost includes the cost of processing the
packets at the end nodes and that of transmitting them from the source to the destination.
In this section, we study how to determine which files to prefetch in order to minimize the

average cost of requesting a file for several system models.

Previous work on prefetch uses either a fixed threshold for all servers or prefetches a

fixed number of files each time. The problem with these approaches is that they do not
consider factors like system load and capacity, which can greatly affect the performance of
prefetching. For example, we should be more cautious in prefetching files when the system
load is high. In our algorithm, we compute the prefetch thresholds based on the network
conditions in real time. Unless indicated otherwise, we assume that prefetches triggered by
the previous request always finish before the user sends out the next request. In addition, we
assume that when a prefetched file is requested for the first time, it is always up-to-date. We
also assume infinite storage space at the client, so prefetched files are never deleted. These

assumptions imply that the first request to a prefetched file will always result in a hit.

3.1 The single user system.

First, we consider a system in which there is one single user and multiple servers from which
the user can retrieve files. In this system, the total cost of requesting a file is the sum of the
system resource cost and the delay cost of waiting for the file to arrive!. Therefore, if the

user requests a file that is not on the local disk, the total cost of retrieving this file is

s
01:aB-5+aT-(t+t0):ozB-s—I—ozT-(Z—l—to) (1)

where s is the file size, t is the transmission time, ¢g is the startup time, and b is the capacity
of the path to the server (packets/time unit). Assuming the cost of using a file stored on
the local disk is negligible, if the requested file had previously been prefetched and saved on

the local cache, then the cost associated with this request equals the system resource cost,
co=ap-$ (2)

because the delay cost is zero.

We now investigate the situation in which the user has just started using a new file, and
currently there are L distinct files in the system with access probability greater than zero.
The average cost, C, of satisfying all user requests stemming from this new file being used

without any prefetching, is the summation of the costs to retrieve each of the L files times

TIn this paper, we assume the processing delay is zero after the file has been received.

the access probability of the corresponding file *, i.e.

L .
C=3pi-lon-sitar- (5 +h)] (3)
=1 2

where p; is the access probability of file ¢, g, is the start up time for retrieving ¢th file, and

b; is the capacity of the path to the server which contains the ith file.

If instead, m files among all the L candidate files are prefetched, say 21,22, -, 2,,, this

average cost becomes

m L
C:EozB-s,-j-l— E pij'[OZB'SiJ+OZT'(tz‘j+toi])] (4)

71=1 7=m+1
where ¢; € {l,---,L}, j = 1--- L, and for any ji # j2, tj, # i;,. Note that these L files
could be on different servers and they are the only files that may be prefetched, because we

never prefetch files with access probability zero.

Comparing (3) and (4), we conclude that the average cost is minimized if and only if we
prefetch all and only those files which satisfy
1
(L4 5 + 1

apb;

(5)

pi >

where so, = b; - to,, and b; is the capacity of the path to server :. We define the prefetch

threshold H = ———~—— and let r = 2Z. In figure 2, the prefetch threshold (H) is
apt H50)+ “B
plotted as a function of the available bandwidth b, for several values of r(zz—;) at ss& =0.1.

Note that, the ratio %ﬁ indicates how valuable time is compared to the system resources.

Figure 2 shows that, for fixed 2—;, more files should be prefetched from a server to which
the capacity of the path is smaller, because it takes longer for the user to fetch the file
himself. In addition, the larger the ratio 3—;, that is, the more expensive time is relative to

the system resources, the lower the prefetch threshold is for fixed bandwidth.

3.2 The multi-user system.

The result in the last subsection is based on the fact that, in a single user system, the

available bandwidth to each server is always the full capacity of the path. In a multi-user

A file can be viewed more than once. Since we have assumed that the cost of a request which does not
invoke file transfer is negligible, when the file is requested again, if the copy the user viewed last time is still
available on the local cache and up-to-date, the cost for this request is zero regardless of whether the first
request was satisfied by a prefetched file or not. Therefore, we do not need to consider this case in the cost
function. If there is not an up-to-date copy of the file that is available locally, the request is treated as a
new request.

prefetch threshold H
© © © © 0 o o o o
o B N W M 01 O N O O B

0 20 40 60 80 100

system capacity b

Figure 2: Prefetch threshold H as a function of system capacity in the single user system,

50
where H = ————,r =22 and > =0.1.
T (1+ 1) +1 @B 5
ap-Y S

system where system resources are shared among users, prefetching increases the delay of
other users’ normal (nonprefetch) requests. Therefore, different criteria must be used to

determine which files to prefetch in such a system.

The multi-user system we study consists of a single server and multiple users who share
the same server and the network link as shown in figure 3a. Users issue requests for files on
the shared server. Fach user’s local system can prefetch files while the user is working. We
model this prefetch system as an M/G/1 Round-Robin processor-sharing system with two
Poisson inputs, shown in figure 3b, where the server in the model represents both the network
link and the server in the real system. The server handles two kinds of requests (inputs):
normal requests, which are those user requests that can’t be satisfied by the prefetched files
on the local disk, and prefetch requests, which are the requests sent by the prefetch program.
All requests to the server are of the same priority and they join the same queue waiting for
service. We assume that those user requests which do not invoke a file transfer consume very
little resources and are negligible. Thus, if a user request can be satisfied by a prefetched

file, it adds no cost to the system.

We start with a special kind of system in which, at any time, the access probability of
each file is either exactly p (p > 0) or 0, where p is fixed within one system but can vary
for different systems. Files with access probability zero may actually be requested by the
user but they are never prefetched. This implies that for a given system and its p, all the

prefetched files will be requested by the user with the same probability p. For simplicity, we
initially assume that the startup time (¢o) is zero. The result for the system with nonzero
startup time is given at the end of this section. Let us now derive the prefetch threshold

step by step.

USER 1
USER 2
NETWORK

: LINK

a) Themultiuser system.

SERVER

Processor Sharing

..... IR <€>

b) The prefetch system model.

Normal Requests A1

Prefetching Requests A2

Figure 3: The multi-user system and the prefetch model.

a) The cost function C.

For a given system, let A be the arrival rate of the file requests from the users when no
prefetch is applied. We assume that prefetch does not affect the user’s behavior regarding
the likelihood of accessing files. In other words, when prefetching is employed, users still
issue requests at rate A in the same pattern, although they can get some files faster due
to prefetching. Let the arrival rate of normal requests and prefetch requests be Ay and A,
respectively. Hence the rate at which user requests are satisfied by the prefetched files is
A — A1, which is simply pA; because prefetched files are eventually requested by the user with
probability p, where p is the access probability of the prefetched files. Thus A + p- Xy = A

or

At =24 (1=p)h (6)
where A; + Ay must be less than /s in order to keep the system in a stable state.

In a Round-Robin processor-sharing system, the average response time for requests re-

quiring an average of x time units of processing is

tzl—p:bﬂ—p))

10

where p is the system load, s is the average file size, and b is the system capacity[6, 7]. For
the system shown in figure 3b, p = s(A; + Ay)/b. This implies that, in a multi-user system,
the cost of a normal request, which is the sum of the system resource cost and the delay
cost, becomes

s

¢t =ag- s+ ar ag s+ ar = Ot s (8)

where b > (A + A)s. Notice that in equation (8), the effect of prefetching on the entire
system is considered by including Ay in the formula. As more files are prefetched, the cost
of normal requests increases because prefetching increases the system load, hence the delay

of retrieving files increases. The average cost of a prefetch request is still
Co = QB - S (9)

Since users issue requests with rate A, and some of them (p);) are satisfied by prefetched
files, the rest (A1) are sent to the server as normal requests; by equations (6), (8), and (9),
we obtain that the average cost of an explicit user request is

A+ A
A

= IO+ =p)h)ap+

C =

(A —pra)ar
b—(A+ (1 —=p)ra)s
This equation for the average cost C' is plotted in figure 4 as a function of Xy for several

values of p. Note that for equation (10), the valid range of Ay is 0 < Ay < % for0 < p <1.

(10)

S:‘l, b:‘ 100, ‘)\ :30,‘ rzlop

COSsT

0 10 20 30 40 50 60 70
A2

Figure 4: Average cost of a user request as a function of Ay for p from 0.3 to 1. (s =1,b=
100, A =30,r = 5% = 100)

11

b) The optimum value of the prefetch rate A,.
Assume p and A are known, we wish to find the value of the prefetch rate Ay which
minimizes the average cost of each request in the system. Once Ay is determined, Ay can be

computed by Ay = A — pAy according to (6).

From equation (10), clearly, at p=1, C is minimized when Ay = A, i.e. all the files which
have access probability 1 should be prefetched. On the other hand, if p = 0, C is minimized
when A; = 0, therefore no files should be prefetched. For 0 < p < 1, we consider the

following. From equation (10), we take the derivative of C' with respect to A,, to obtain

dC s ar(As — pb)
o, = 3= Pes + G T e (11)

Differentiating (11) again, we get

£C 22 ar(l—p(hs —ph
75 = 2 0 (- T

(12)

In a stable system, (A4 (1 — p)Az)s = (A1 + A2)s must be less than b. Therefore equation
(12) shows that for pb > As (0 < p < 1), d;A

equation (10) is maximized at % = 0 when pb > As. Solving % = 0 for Ay, we obtain the

is always less than zero. This implies that

critical value X}, which is given by

)\/2:%(5_/\3_ M) (13)

(1 —p)s (1 —plas

Since function (10) is maximized at A}, where < K = 0 for pb > \s, it follows that the cost
decreases as Ay increases for Ay > Aj. Specifically, if j < 0 for the given p, A, and 2%, then
for any A in the range [0, —] the higher the A,, ie. the more that files with access probablhty
p are prefetched, the lower the cost is. Thus, for the given p, A, and 2%, if X < 0, prefetching

all the files with access probability p will minimize the cost.

Notice that we have assumed the access probability of each file in the system is either p
or 0. In addition, we assumed that files with access probability 0 may actually be requested,
which implies that the rate at which files with access probability p appear in the system
can be any value between 0 and %. For example, if files with access probability zero are
never requested by the user, then A, is equal to 2 2. If all the files have access probabilities
0, then Ay = 0, because we never prefetch the files with access probability 0. Therefore, our

conclusion may be stated as follows

12

For given p, X\, and %ﬁ, independent of the rate at which files with access proba-
bility p appear in the system, if X, < 0, then prefetching all the files with access

probability p minimizes the cost.

The number of files that are actually prefetched is determined by the rate at which files with

access probability p appear in the system, we do not need to know that to minimize the cost.

For given p, A, and 2—;, it A, > %, the cost increases as Ay increases for Ay < %, therefore
no files should be prefetched. If 0 < A, < %, since the access probabilities of files in the
system vary for different clients and with time in a real system, it is very hard to determine if
Ay would be greater than A, by prefetching all the files with access probability p. Therefore
the lower cost can not be guaranteed at all times, and we choose not to prefetch any file in

this case.

The above result is for the case when pb > As. If pb < As, (11) shows that % > 0 for

all Ay, which means that the cost increases monotonically as Ay increases, therefore no files

should be prefetched.

¢) The prefetch threshold H.

Let us now find the prefetch threshold H for the system with pb > As such that for p > H,
A, < 0 and the cost is minimized by prefetching all the files with access probabilities p. From
equation (13), we obtain that A, <0, i.e. (10) is maximized at Ay < 0, if and only if

(I —p)eZ

p > 11— > (14)
(L—p)?b+ 5T
where p = % We then set the prefetch threshold to be
1 — p)ez
TS Gl v (15)

(1—p)?b+ 3%

It’s easy to prove that H is always greater than p. Thus if p > H, then p > p, ie. pb > As.
Therefore, equation (14) indicates that if the access probability p is greater than or equal to
the threshold H, then A, < 0 according to (13). Moreover, following our previous analysis
this implies that prefetching all the files with access probability p minimizes the cost for
p > H. The threshold H is plotted in figure 5 as a function of system utilization p for

several different values of r (= Z—g)

Figure 5 shows that as system load p increases, the prefetch threshold tends to increase

as well, which means that fewer files should be prefetched. But the increase is not monotonic

13

prefetch threshold H
© © © © 0 o o o o
o B N W M 01 O N O O B

0 0.10.2030.405¢0.60.70.80.9

utilization

Figure 5: Prefetch threshold H as a function of utilization p for different values of r. (r =
2L s =1,b=100)
ap

for small values of 3—;. The reason for this is, in those cases, when the load is low, prefetching
does not save much time. As the load increases, it takes longer to transmit files and prefetch
can save more time, therefore the threshold decreases. As the load continues to increase,
prefetching files will add relatively long delay to the normal user requests, so the threshold
needs to be increased again. We can prove that the threshold may decrease as p increases
from zero, if and only if b > 3—]7;; and for fixed 3—;, the threshold is minimized at p = 1—\/% .
Furthermore, by comparing the prefetch threshold at p = 0 and at p = 1—\/%, we can show

that for any 6 > Z—]Ta the maximum drop in the prefetch threshold value, H,—o — H)
p=1-

apg.b
, 15 0.0674.

In both single and multi-user systems, for fixed 2—;, the higher the system capacity, the
higher the prefetch threshold, because the savings of time is less in a faster system. However,

only in the multi-user system, is the prefetch threshold affected by system load.

d) The upper bound for the prefetch thresholds in systems with arbitrary access
probability distribution.

Up to now, we have been studying the system in which, at any time, the access probability
of each file is either p or 0, where p is fixed within one system. The following theorem shows
that for an arbitrary distribution of access probabilities, where the access probability of each
file in the system can be any value between 0 and 1, expression (15) gives an upper bound for

the optimum prefetch threshold of this system. In other words, for any system, regardless

14

of the actual distribution of the access probabilities, the cost can always be reduced by
prefetching files whose access probability is greater than the system’s prefetch threshold
computed from (15).

Theorem 1 Consider a system in which b, s, A, and S—JTS are known. Let f(q) be the rate
at which files with access probability q appear in the system, where [, qf(q)dg = X and
0<q<1. Ezpression (15),

(1—p)t
(1—p)?b+ 3%
is an upper bound for the optimum prefetch threshold of this system.

H=1-

This theorem can be proved based on our previous result. The details of the proof are given

in appendix A. Unlike the system we studied previously, we assume that in this general

system, files with access probability zero are never requested, hence we do not care about
p

the value of f(0). As an example, we examine the case when f(q) = < next.

Studies show that a small percentage of the files available on a given server usually
account for a large portion of accesses to the server[3, 5]. This implies that, in general, a
small number of files in the system have large access probabilities, while most of the files
have small access probabilities. To model this, we choose a simple function for f(g), namely
we assume that the rate at which files with access probability ¢ appear in the system is given

by f(q) = %, where ¢ € (0,1] and X is the arrival rate of the user requests.

In this example system, if we set the prefetch threshold as H (0 < H < 1) and prefetch
all the files with access probability greater than or equal to H, then Ay = [%dq = —\n(H).
Among them, [} q%dq = (1 — H)\ are eventually used on average, hence \;y = HA. Similar
to our previous analysis, we compute the average cost of each user request as

ar-s-H
b—[H —In(H)]\

_ Arer + Azeo

¢ A

= aps|H —In(H)| + (16)

Equation (16) is plotted in figure 6 as a function of the prefetch threshold H for different
values of user request arrival rate A. Taking the derivative of equation (16) with respect to

H yields that

dc (1 1>+ ar - s +p-ozT-3-)\(1—1/H)
dil ~ PN T T T H —In(H)N T [b— (H — In(H)\]?
Figure 6 shows that the cost is minimized at % = 0. Let us evaluate % = 0 for several

system loads and 3—]7; to determine the optimum value of H in each case such that the cost is

15

s =1, b =100, r=100

8 ‘ —
N . \ | anbda=80 —
7 i : i l-arbda=70----
P : | anbda=60 ------
O g b : | ambda=50 -
i : § | da=40 - -~
: | anbda-
(&) 5 i
) !
g 4 S e
) |
Z 3 ' -
5 \ R s S
1
0 0.2 0.4 0.6 0.8 1
Threshold H

Figure 6: Average cost C' as a function of prefetch threshold H for different values of .
(s =1,6=100,r = 3T = 100)

minimized. The results are compared with the upper bound obtained using (15) in figure 7,

where the upper bounds are shown as smooth lines and the results for f(q) = % are shown

as points connected with lines.

e) The prefetch threshold for the system with nonzero start up delay.
So far, we have been studying the system with zero startup time. For the system with a

startup time ty greater than zero, we can prove in a similar way that the prefetch threshold

should be set to the following

(1-p)(1+ 3ot

H=1-
(= b+ (1+2)22

(17)

where sg = to - b(1 — p).

In summary, the prefetch threshold module works in the following way. For given A and
oF, and a file with access probability p; > 0, compute H using equation (17). The file is
prefetched if and only if p; is greater than or equal to the H obtained.

f) The prefetch threshold for more general systems.

Up to now, we have been assuming that all users in the system have the same ap and
ar. In the real world, people value their time differently; therefore, ap can vary from user
to user. Since generally users who are sharing the same network are supported by the same
network carrier company, we can assume that ap is the same throughout the system. In
addition, after some users have started prefetching files, others can’t use (15) to determine

the prefetch thresholds. This is because the distribution of access probabilities in the system

16

0.9
T os
©
S 0.7 .
3 T
£ 0.6] .
b -7 3]
- s ;. R
< 0.5 L)
E 0.4 //EUpperbound r=20 — |
o ~~ Upperbound r=100 -----
s 0.3r = Upperbound r=500 - 7
distribution f(x), r= 20 ¢
0.2 — gdistribution f(x), r=100 —+- 1
""Ew—?* . di stlribultionlf(x)l, r=500 -&-
0.

l 1
0O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

utilization

Figure 7: The prefetch threshold upper bound and the prefetch threshold obtained for the
system with f(q) = % (s=1,6=100,r = 3—2)

is very complex, and a user may be unable to find the user request rate A, from the current
A1 and Ay, In the following, we study the system with users who have different az’s and in

which some users have started prefetching files. Again, we assume the startup time is zero.

Assume there are n users in the system and the cost of a time unit for user ¢ is ag,. In
addition, we assume that user ¢ issues requests at rate A;. Accordingly, the rate of normal

requests from user 72 is);,, and the rate of prefetch requests from the same user’s prefetch

i1
program is \;,, where A;, could be zero. We further assume that the arrival of requests to
the server is a Poisson process. As in the previous system, the cost of a user request is the

sum of the system resource cost and the time cost, and is given by

S n ZT-L_)\Z arT.
)\il +)\2_2 + =1 1 7
Z?:l Ai [E()aB b— E?:l()‘h +)\2'2)8]

Assume that for each user in the system except user k, the current prefetch request rate \;,

C =

(18)

is known, and Az, = 0. We want to determine the prefetch threshold for user k, Hj, such
that the cost C' decreases if user k prefetches the files with access probabilities greater than

or equal to Hy. Similar to the method we used before, we take the derivative of the cost

function twice. For the case where agif < 0 for all possible values of Ag,, we find the critical
2
value A} which makes % = 0. When)} <0, we can compute the prefetch threshold Hy,

which is given by

aTk[b - ()‘k + Z?;ék()\il +)‘22))5]

Hy=1-
* aplb — (k4 Xl (A + Ai))s]? + s 30y Ao + an [b — 0, (A, + A,)s]

(19)

17

Aig+Aiy)

Since user k has not prefetched any file, we have that Az, = A\; and DDA 3 = p, and

then (19) is equivalent to
_ arT, [b - E?:l()‘h +)‘Zé)s]
aplb — 3y (Aiy 4 Aig)s]? 4 5 iy Aoy + an [b— 325, (X, + Ay)]
1)T
= 1- s U=r (20)
(L=p)2b+ JE(1 = p) + 2= T Mo,

H, =1

Similar to the proof for the previous system, we can show that for fixed A;,, (1 < i <
n,t # k), if user k prefetches all the files with access probability greater than Hj, the cost
C' is minimized. As the system changes, each user recomputes his prefetch threshold using
(20) based on the new network conditions. In this way, the prefetch thresholds adapt to a
changing environment. This algorithm is greedy in nature. And if the system is stable, it

can achieve its locally optimal state.

4 Simulation results

In the last two sections, we studied the algorithms in the prediction module and the threshold
module. We have also presented a prediction algorithm for web browsing which could be run
on both the server and client. An important question regarding this prediction algorithm is
how the access probabilities from the server and client should be used, and how this affects
the system performance. In this section, we show the simulation results obtained from several

approaches.

The simulations were driven by the UCLA Computer Science (CS) department web
server’s log file taken during the period from April 11th to June 5th of 1996. It consists
of more than 300,000 actual user accesses. In the simulations, we concentrated on two rep-
resentative pages: the CS department home page and the home page for TAs (teaching
assistants). More precisely, only when one of these two pages was being viewed, was the
prediction algorithm activated and the program simulated to prefetch files linked to the
page. And only when a file linked to one of these two pages was requested, did the program
check if it had been prefetched. The CS department home page contains links to research,
students, faculty, and other general information home pages. These links are not updated
very often. The TA home page has links to all the class home pages which are updated
frequently to include new assignments, handouts, etc. Therefore, simulations on these two
pages indicate how well our prediction algorithm works on pages that are revisited frequently

by some particular users and on those that are generally not revisited frequently.

18

To study how the access probabilities from the server and the client affect the performance
of prediction, we tested three cases. 1) Using only the access probabilities from the client
site. 2) Using only the access probabilities from the server site. 3) Merging the access
probabilities from server and client as designed in our original algorithm. Namely, assume
A is the current page; if C4 < 5, then use the access probabilities from the server for the
links on page A, otherwise use the access probabilities from the client. A fixed prefetch
threshold was used in each simulation run and varied for different runs. All the files with

access probability greater than or equal to the prefetch threshold were prefetched.

We measured several different system parameters. If the user requests a page and it
is satisfied by a prefetched copy of the file, then we call it a hit. The hit rate is defined
as the ratio of the number of hits over the total number of user requests. For a fixed
number of user requests, the higher the hit rate, the more time is saved by prefetching. The
successful prediction rate is the probability of a prefetched file being eventually used. A high
successful prediction rate indicates that less bandwidth is wasted due to prefetching unused
files. Figures 8 and 9 show the successful prediction rate and hit rate obtained for the pages
linked to the CS home page and the TA home page respectively with prefetch thresholds
from 0.01 — 0.9 for the three cases described above.

As shown in figure 8, for both home pages, using only access probabilities on the client
site yields successful prediction rates of around 70% when the threshold is just slightly higher
than zero. As the threshold increases, the successful prediction rate tends to increase. In
figure 8a, the tails of the top two curves drop because there were very few files prefetched
at those threshold values, and the sample size was very small. Each curve ends at the point
where no file is prefetched for larger prefetch thresholds. Although the successful prediction
rates are lower when the access probabilities from the server were used, the result is good
given that these probabilities are based on the accesses from hundreds of other clients who are
totally unrelated to the user. Without the access probabilities from the server, no prefetch
is possible when the user visits a page for the first few times. This is further supported by

the hit rate distribution shown in figure 9.

From figure 9 we can see that, if the prediction algorithm is run only on the client site,
the hit rate is not as good as the successful prediction rate. The reason for this is, in many
cases, the user had not visited a page enough times and no file was prefetched from the page.
On the other hand, by using only access probabilities from the server or merging those from
server and client, we obtain much higher hit rates. In addition, for small prefetch thresholds,

these two curves are very close because prefetches invoked due to high access probabilities

19

[
©
c
o
S 0.6
3 <ﬂ:;+
5 oo
0.4f B
ERRe PR
s
S 02k /E Using client access probabilities -—
7 / Usi ng server access probabilities -+-
%Jsi ng client & server access probabilities -&--
4
0 1 1 1 1
0 0.2 0.4 0.6 0.8
a) prefetch threshold
CS HOME PAGE
1 T T T T

successful prediction rate

0.2 F/ Using client access probabilities <-—
% Usi ng server access probabilities -+--
4Using client & server access probabilities -5--

0 Il Il Il Il
0 0.2 0.4 0.6 0.8

Figure 8: Successful prediction rate vs prefetch threshold. a) TA home page, b) CS home

page.

at the client site only contribute a small portion of the total number of prefetches.

In figure 9, the hit rate of the pages linked to TA home page is lower than 40% when the
prefetch threshold is zero. This is because, although the TA home page is the main place
where requests to class home pages are generated, some students access a class home page
using bookmarks or from pages other than the TA home page, for example the instructor’s
home page. In those cases no prefetch was done in our simulation since we did not apply
the prefetch algorithm to pages other than the TA and CS home pages. The same problem
exists for pages linked to the CS home page, but it is less significant. For the same reason,

the hit rate in the real system should be higher than what is shown in figure 9.

b)

prefetch threshold

20

TA HOME PAGE
1

T T T T

Using client access probabilities <-—

Usi ng server access probabilities —+-
0.8 tesing client & server access probabilities -8-- o

o
o i
T

= i
1

a) prefetch threshold

CS HOVE PAGE
1 T T T

Using client access probabilities <-—
& Usi ng server access probabilities —+-
0.8 HUsing client & server access probabilities -8-- o

[y
[

0 0.2 0.4 0.6 0.8

b) prefetch threshold

Figure 9: Hit rate vs prefetch threshold. a) TA home page, b) CS home page.

Figure 10 shows the relation between the prefetch threshold and the average number of
files prefetched for each user request, which indicates the amount of traffic increase in the
entire system due to prefetching. When only the access probabilities from the client was
used, this average number is very low, since the prediction was very accurate and if the
user had not visited the page at least 5 times, no link on it was prefetched. More files were
prefetched for the other two cases, but still the average number of files prefetched for each

user request is low. Comparing figure 9 and 10, we can see that for a hit rate of more than

60%), the average number of files prefetched for each user request is less than 2.

21

] TA HOVE PAGE
g’ 8 T T T T
[
s Tr 1
o Using client access probabilities -—

6 - Usi ng server access probabilities —+-
5 Usi ng client & server access probabilities -B--
o 5 1 1
[} |
= |
S a4l g
5]
2 R
= 3 -
o 1
%] \\\
2 o2p .
- \
w— 1K i
. l‘ee%@ijif:
5] 0 i e & o
€ 0 0.2 0.4 0.6 0.8 1
c

prefetch threshold

Figure 10: Average number of files prefetched for each user request. (TA home page)

5 Conclusion

In this paper, we have presented an adaptive network prefetch scheme, which is comprised
of a prediction module and a threshold module. To achieve high efficiency with prefetching,
in the prediction module, we must devise an algorithm to predict the access probability
of each file as accurately as possible. One such prediction algorithm for web browsing has
been discussed. In the threshold module, the prefetch threshold for each related server is
computed. We have derived an upper bound for the prefetch threshold which is a function
of system load, capacity, and cost of a time unit and a system resource unit to the user.
Files with access probability greater than its server’s prefetch threshold are prefetched. We

showed that, by doing so, a lower average cost can always be achieved.

We also studied the performance of our prediction algorithm for web browsing by setting
the prefetch threshold at various values in the simulation. The results show that generally,
using the access probabilities from the client can ensure that a large portion of prefetched
files are used, while the access probabilities from the server can help improve the number of

user requests satisfied by the prefetched files.

In summary, we believe that prefetch is a good approach to reduce latency for network
applications. However it must be implemented in a way such that the overall system per-
formance can be improved, and the tradeoff between saving user’s time and the bandwidth
usage must be considered. We think the significance of this issue goes beyond the prefetch

problem. For example, in the case of push server or push caching[3, 5, 11], it is important

22

to study its efficiency, this means not only the percentage of the pushed files being used,
but also and more importantly, the impact of pushing to other users who are sharing the
same network but may or may not be able to use these pushed files at all. As in most of
the other prefetch algorithms, most commercial push servers use fixed (possibly customized
by the user) values to determine what and when to push, without taking into account the
network conditions at the time. This will almost certainly not achieve the best efficiency
for the overall system. Clearly, the solution to this problem is adaptivity - adaptive to the
user’s behavior and adaptive to the network conditions. This is also what we are trying
to show in our prefetch scheme. In fact, we can use the same kind of approach for the
threshold algorithm to analyze the push server or push caching problem. As more functions
like prefetching or pushing are added to the network applications, it is very important to

consider the tradeofls involved as we have shown here.

References

[1] A. Agarwal, Analysis of Cache Performance for Operating Systems and Multiprogram-
ming, Kluwer Academic Publishers, Boston, 19809.

[2] A. Bestavros, “Speculative Data Dissemination and Service to Reduce Server Load,
Network Traffic and Service Time for Distributed Information Systems”, Proceedings
of ICDE’96: The 1996 International Conference on Data FEngineering, New Orleans,
Louisiana, March 1996.

[3] A. Bestavros, “WWW Traffic Reduction and Load Balancing Through Server-Based
Caching”, IEEE Concurrency: Special Issue on Parallel and Distributed Technology,
vol. 5, Jan-Mar 1997, pp. 56-67.

[4] J. Griffioen, R. Appleton, “Reducing File System Latency using a Predictive Approach”,
Proceedings of the Summer 1994 USENIX Conference, Boston, Massachusetts, June
1994, pp. 197-207.

[5] J.S Gwertzman, “Autonomous Replication Across Wide-area Internetworks”, Thesis,

Harvard College, Cambridge, Massachusetts, 1995.

[6] L. Kleinrock, Queueing Systems Vol 1: Theory, John Wiley & Sons, New York, NY,
1975.

23

[7] L. Kleinrock, Queueing Systems Vol 2: Computer Applications, John Wiley & Sons,
New York, NY, 1975.

[8] E. Markatos, C. Chronaki, “A Top-10 Approach to Prefetching on the Web”, Tech-
nical Report 173, ICS-FORTH, http://www.ics.forth.gr/proj/arch-vlsi/www.html, Au-
gust 1996.

[9] M. Mroz, “A Client Based Prefetching Implementation for WWW?” MS dissertation,
Dep. Comp. Sci. Univ. of Boston, 1995.

[10] V.N. Padmanabhan, J.C. Mogul, “Using Predictive Prefetching to Improve World Wide
Web Latency”, Computer Communication Review, July 1996, pp. 22-36.

[11] T. Spangler, “Push Servers Review”, PC Magazine, June 10, 1997, pp. 156-180.

[12] PeakJet Software Homepage, http://www.peak-media.com/PeakJet/PeakJet.html.

A Proof for the threshold upper bound.

We now prove theorem 1.

Theorem 1 Consider a system in which b, s, A\, and 2—; are known. Let f(q) be the rate
at which files with access probability q appear in the system, where [, qf(q)dg = X and
0<q¢<1. Ezpression (15)

(1—p)t
(1—p)*b+ 3%
is an upper bound for the optimum prefetch threshold of this system.

H=1-

Proof:
We assume f(q) is continuous. The proof is similar for f(¢) discrete.

Since f(q) is the rate at which files with access probability ¢ appear in the system, for
any h (0 < h < 1), if all and only those files with access probability greater than or equal to

h are prefetched, then the arrival rate of the prefetch requests is

Ay = /hl f(q)dg (21)

hence, the normal requests arrive with rate
1
A=A —/h qf(q)dg (22)

24

When the prefetch request rate is Ay, the average cost of each user request is given by
Aer + Ageo

C(Ag) = ;)

(23)

where, the same as in our previous analysis,
s
b— ()\1 +)\2) - S

c,=ap-$§

cit=ag-s+ar-

Assume that, by plugging b, s, A, and %ﬁ into (15), we obtain a value H'. Now we consider
another system with the same b, s, A, and %ﬁ. When the user is using a file, for each file
in the new system, we set its access probability to H' if and only if it is at least H' when
the same file is being used in the original system, otherwise we set it to 0. Since two system
have the same b, s, A and z—g, the prefetch threshold for the new system is H' by (15). This
implies that the average cost of a user request can be minimized by prefetching all the files
with access probability H’. In this new system, let A; be the corresponding prefetch request
rate at which the cost is minimized. By our definition of the new system and the result in
section 3.2, it is given by

Y= [fa)dg

Hl
Let Chrew(A2) be the average cost of viewing a page when the prefetch rate is Ay. The analysis

in section 3.2 shows that

dOnew()\Q) _ S !
T—x[(l—H)OfB+

ar(As — H'D)
[6— (A + (1 = H')Ay)s]

2] <0 (24)
for 0 < Xy < X

Based on equations (21) and (22), we take the derivative of equation (23) with respect
to Ay to obtain that
dC(X2) s ar[(A2h + A1)s — k]
d), A [b— (A1 + Az)s]?
Comparing equation (24) and (25) term wise yields that
dC(Xq) < dCrew(A2)
d\y — d)

[(1 —h)ap +

(25)

<0
for 0 < Xy < A,

Since for 0 < Ay < Ay, H' < h < 1. This implies that for H' < h < 1, the average cost
of viewing a file decreases as h decreases. Therefore the prefetch threshold which is going to
minimize the cost in the original system must be less than or equal to H'. In other words,
H' obtained from (15) is the upper bound of the prefetch thresholds for the general systems
with the same b, s, A, and z—; This completes the proof. O

25

